function index_lta_vis,wts,wtn,xl,t ;--------------------------------------------------------------------------- ; Purpose: ; Calculate the refractive index of liquid ternary hno3-h2o-h2so4 aerosols ; at visible wavelengths (< 2 micron) as described in Luo et al., GRL, 1997. ; Input: ; t.......temperature in K ; wts.....wt fraction of H2SO4 ; wtn.....wt fraction of HNO3 ; xl......wavelength in um ; ; Output: ; refra...relative refractive index ; ; Called functions: AH2O, AHNO3, ASUL, RHO1 ; ;--------------------------------------------------------------------------- if (t lt 185. or t gt 370. or wts+wtn gt 0.7 or $ wts+wtn lt .05 or xl lt .23 or xl gt 2.) then $ print,'out of range in index_lta_vis.pro' wt = wts+wtn rho = rho1(wts,wtn,t) a = (1.e0-wt)*rho /18.016e0 *ah2o(xl)+ wts*rho/98.08e0*asul(wt,xl)+ $ wtn*rho /63.016e0 *ahno3(wt,xl) result = sqrt( (1.e0+2.e0*a)/(1-a) ) return,result end ;--------------------------------------------------------------------- ; Molar refractivity of HNO3 function ahno3,wtn,xll x = [10.334,5.2775E-2,0.253884,-1.4189,0.100885,0.639675,1.016624,-0.136856,-1.218] a = x(0)+ x(3)*wtn+x(6)*wtn^2 xm = x(1)+ x(4)*wtn+x(7)*wtn^2 xl0 = x(2)+x(5)*wtn+x(8)*wtn^2 ahno3 = a+xm/(xll^2-xl0^2) return,ahno3 end ;--------------------------------------------------------------------- ; Molar refractivity of H2SO4 function asul,wts,lambda x = [9.134298065,8.853334E-04,-5.537325E-08,1.1290527381E-12, $ -5.69309238E-19,-6.1259608,2.052362834E-03,-2.651123808E-07, $ 1.33055293E-11,-2.2648372E-16,12.065,-1.303527269E-03, $ 6.90377741E-08,-2.863741935E-12,4.76286166E-17,48.95, $ -2.35735371E-02,2.8358018E-06,-1.2611534E-10,1.923364E-15] xmu = 1.e4/lambda ww = (wts-0.5e0) x1 = x(0)+x(5)*ww+x(10)*ww^2+x(15)*ww^3 x2 = x(1)+x(6)*ww+x(11)*ww^2+x(16)*ww^3 x3 = x(2)+x(7)*ww+x(12)*ww^2+x(17)*ww^3 x4 = x(3)+x(8)*ww+x(13)*ww^2+x(18)*ww^3 x5 = x(4)+x(9)*ww+x(14)*ww^2+x(19)*ww^3 asul = x1+x2*xmu+x3*xmu^2+x4*xmu^3+x5*xmu^4 return,asul end ;--------------------------------------------------------------------- ; Molar refractivity of H2O function ah2o,lambda ah2o = 0. b1 = [1.4211, 7.540441E-04, -9.81512155E-08, 5.7218513E-12 , -1.237611E-16] b2 = [3.506813, 1.6411E-05, -4.61273E-10, 1.2763141E-14, -3.579466E-20 ] x = 1.E4/lambda ah2o=b2(0)+b2(1)*x+b2(2)*x^2+b2(3)*x^3+b2(4)*x^4 if (x le 1.23E4) then begin ah2o=b1(0)+b1(1)*x+b1(2)*x^2+b1(3)*x^3+b1(4)*x^4 endif return,ah2o end ;--------------------------------------------------------------------- ; Density of ternary solution in g/cm3 function rho1,wts,wtn,t x = [2.393284E-02,-4.359335E-05,7.961181E-08,0.0,-0.198716351, $ 1.39564574E-03,-2.020633E-06,0.51684706,-3.0539E-03,4.505475E-06, $ -0.30119511,1.840408E-03,-2.7221253742E-06,-0.11331674116, $ 8.47763E-04,-1.22336185E-06,0.3455282,-2.2111E-03,3.503768245E-06, $ -0.2315332,1.60074E-03,-2.5827835E-06] w = wts+wtn wth = 1.-w v1 = x(0)+x(1)*T+x(2)*T^2+x(3)*T^3 vs = x(4)+x(5)*T+x(6)*T^2+(x(7)+x(8)*T+x(9)*T^2)*w $ +(x(10)+x(11)*T+x(12)*T^2)*w*w vn = x(13)+x(14)*T+x(15)*T^2+(x(16)+x(17)*T+x(18)*T^2)*w $ +(x(19)+x(20)*T+x(21)*T^2)*w*w vmcal = wth/18.016*v1 + vs*wts/98.08 + vn*wtn/63.016 rho1 = 1/vmcal/1000. return,rho1 end